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Turbine Wind: Analysis 

1. Problem statement 

Wind energy is a crucial source of renewable energy that has seen rapid growth in recent 

years. However, the performance, efficiency, and reliability of wind turbines are often affected 

by variable wind conditions. To address this issue and optimize the operation of wind turbines, 

it is essential to carries out big data analysis and power prediction. In this way, insights of optimal 

operating conditions can be found to increase the power productivity of this equipment. 

 

2. Solution approach 

 The development of data analysis and power prediction model based on wind features 

was performed using the following steps: 

a) Real-data collection. 

b) Data cleaning and formatting. 

c) Data analysis 

d) Machine learning development. 

The complete project code can be accessed here. 

3. Stakeholders and Benefits 

Big data analysis and power prediction of wind turbines offer various benefits to 

stakeholders, contributing to efficient wind energy production and a sustainable future. Key 

benefits for each stakeholder group include: 

a) Wind farm owners/operators: Improved decision-making for maintenance, grid 

management, and energy production. Increased efficiency and reduced operational 

costs. 

b) Energy consumers: Stable and reliable energy supply. Lower energy prices due to 

improved efficiency. 

c) Government/regulatory agencies: Achievement of renewable energy targets. Progress 

towards greenhouse gas emission reduction goals. 

d) Turbine manufacturers/technology providers: Enhanced wind turbine technologies 

driven by data analysis. Competitive advantage in the market. 

e) Researchers/academic institutions: Opportunities for research, innovation, and 

development of new models/algorithms. Collaboration with industry stakeholders for 

practical applications. 

4. Data 

The dataset was obtained from Kaggle Repository (Turkey Wind Turbine Data). In Wind 

Turbines, Scada Systems measure and save data. The dataset presents the following attributes 

(50530 instances): 

a) Date/Time (for 10 minutes intervals). 

b) LV ActivePower (kW): The power generated by the turbine for that moment. 

c) Wind Speed (m/s): The wind speed at the hub height of the turbine (the wind 

speed that turbine use for electricity generation). 

https://github.com/troncosofranco/IoT-Spark/blob/main/Wind_Turbine_Power_w_PySpark.ipynb
https://www.kaggle.com/datasets/berkerisen/wind-turbine-scada-dataset
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d) TheoreticalPowerCurve (kWh): The theoretical power values that the turbine 

generates with that wind speed which is given by the turbine manufacturer 

e) Wind Direction (°): The wind direction at the hub height of the turbine (wind 

turbines turn to this direction automatically). 

5. Tools 

- Spark, Data visualization, Data cleaning, Machine-Learning, Python 

6. Results 

The data cleaning and processing procedure was performed using Pyspark library. PySpark 

is the Python library for Apache Spark, an open-source, distributed computing system designed 

for big data processing and analytics. PySpark allows data scientists and developers to process 

large volumes of data in parallel across a cluster of computers. Some key features of PySpark 

include: 

a. Resilient Distributed Datasets (RDDs): RDDs are a fundamental data structure in Spark, 

allowing fault-tolerant parallel processing of data. They can be created from data stored in 

Hadoop Distributed File System (HDFS). 

b. DataFrames and Datasets: PySpark provides higher-level abstractions called DataFrames 

and Datasets that offer more optimized and convenient ways to work with structured data. 

c. MLlib: PySpark includes a machine learning library called MLlib, which provides various 

algorithms and tools for building scalable machine learning models. 

d. GraphX: PySpark also includes a graph processing library called GraphX, allowing users to 

perform graph computations and analytics. 

e. Streaming: PySpark supports real-time data stream processing through its built-in streaming 

capabilities, allowing users to process and analyze live data. 

 

6.1. Data Distribution 

 

The time series was decomposed into months, hours and days. The data summary was 

performed using Pandas Autoprofiling. The six variables are numeric, with no missing or 

duplicated values. Fig 1 shows the data distribution of the multiple features. 



Turbine Wind Analysis 
Franco Troncoso 

3 
 

 

Fig 1. Data distribution using histograms. 

As shown in Fig 1, the following findings can be observed: 

a. Wind speed: the data distribution is skewed right, also known as a positively skewed 

distribution. The mean (average) is greater than the median and mode in a positively 

skewed distribution. This is because the few large values on the right side of the 

distribution significantly impact the mean, pulling it to the right. Zero wind velocity 

values are also presented in the dataset. On the other side, wind velocities higher than 

20 m/s are scarce. 

b. Wind direction: it shows a bimodal distribution (data distribution with two distinct peaks 

or modes), indicating two preferential wind directions (70 and 210°). The 70° peak is 

narrower than another one, suggesting a more concentrated distribution around this 

value. The distance between the two peaks is relatively large, indicating that wind 

direction groups are not overlapping. 

c. Theoretical power curve: This feature shows excessive outliers and missing values. A null 

theoretical power curve for modelling purposes has few incidences. Excluding the 

outliers, the data distribution is approximated to a uniform distribution. 

d. Lv active power: It shows a similar data distribution to the theoretical power curve, 

indicating that no energy is generated under a specific range of wind conditions (speed 

and direction). In this way, theoretical and active power curves are strongly correlated. 

e. Month/min: These features exhibit uniform distribution. 

f. Hour: It shows the stratified uniform distribution. Most hour registers are at the 

beginning or the end of the day. During the day, the amount of hour registers collected 

oscillates between two strata. 
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6.2. Feature average by month 

The wind characteristic of a place varies with month, season, and weather conditions, which 

directly affect power generation. Fig 2 shows the power generation and wind conditions average 

by month. 

 

Fig 2. Average features by month. 

March, August and November are the top three months with significant active power 

production. Theorical and active power has a very similar distribution. Conversely, the warm 

months in Turkey (from April to July) present lower wind speed averages. In August, the average 

wind speed is high. Furthermore, the months with the highest wind speed are the same with the 

most increased power production. This observation is not observed for wind direction, which 

changes over the year and the top months with power generation (March: 180°, August: 50°, 

and November: 100°). This behavior indicates that wind speed correlates to power generation 

more than wind direction. 

 

6.3. Feature average by hour 

The wind conditions, as well as the power generation, varies over the day. For this reason, 

analyzing the features on an hourly is relevant. Fig 3 shows the average feature values by the 

hour. 
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Fig 3. Feature average values by hour. 

As stated above, the wind speed is higher during nighttime (from 6 p.m. to 4 a.m.), 

around 8 m/s. Between 9 a.m. and 12 p.m., the average wind speed decreases to around 6.5 

m/s. In concordance, the highest power generation is observed during the last part of the day 

(about 1400 kw), when the wind velocity is more elevated. On the other side, power generation 

is minimum in the morning and the noon. 

6.4. Correlation heatmap 

A correlation heatmap is a graphical representation of the relationships between variables in a 

dataset. It is often used to visualize the strength and direction of these relationships, which can 

help identify patterns and potential associations among the variables. One common method for 

calculating correlation is the Pearson correlation coefficient.  

The Pearson correlation coefficient (also known as Pearson's r) is a measure of the linear 

relationship between two continuous variables. It ranges from -1 to 1, where: 

a. A value of -1 indicates a perfect negative linear relationship (when one variable 

increases, the other decreases in a linear fashion). 

b. A value of 0 indicates no linear relationship between the variables. 

c. A value of 1 indicates a perfect positive linear relationship (when one variable 

increases, the other also increases in a linear fashion). 

It is important to note that correlation does not imply causation – a strong correlation between 

two variables does not necessarily mean that one causes the other. Fig 4 shows the correlation 

heatmap by Pearson coefficient. 
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Fig 4. Correlation heatmap by Pearson coefficient. 

As shown in Fig 4, theoretical and active power generated is highly correlated, as expected. On 

the other hand, active power generation-wind speed has a strong correlation (R = 0.91) with 

wind speed, as inferred previously. The power generation is increased with the wind speed, as 

expected—furthermore, negligible Pearson correlation between power generation and wind 

direction and time variables. 

No multicollinearity is observed. Multicollinearity is when two or more independent variables in 

a regression model are highly correlated. This high correlation can cause problems in estimating 

the individual effects of each variable and lead to unstable model coefficients. A common rule 

of thumb is that a correlation coefficient greater than 0.8 (or less than -0.8) indicates a high 

correlation between variables. The highest correlation was between wind direction and month 

(-0.17). 

6.5. Power Production vs wind features 

A first overview of power production versus wind features was obtained using a pair plot (grid 

of scatter plots where each variable in a dataset is plotted against every other variable). The 

correlation heatmap shows the scatterplot of power generation against wind speed in Fig 5. 
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Fig 5. Power production (real and theoretical) versus wind speed. 

From the previous figure, the following observations can be made: 

a. The theoretical power production satisfactory reproduces the real power production 

behavior. 

b. The power production shows an asymptotic behavior (3500 kW for higher wind speed 

value than 13 m/s, approximately. 

c. Zero values of real power production occur in a broad range of wind speeds. This 

observation could be attributed to the fact that the data collection continued when the 

wind turbine was stopped, probably during routine maintenance, being an anomaly for 

modelling purposes. 

The zero values distribution in power generation was analyzed, and the results plotted in Fig 6. 

 

Fig 6. Zero values distribution in power generation versus wind speed. 

Most zero values for real power production occur at a wind speed from 0.5 to 4 m/s (long-tail). 

On the other hand, for zero theoretical power production, the maximum value observed was 

3.0 m/s, which represents the minimum speed required to generate theoretical power 

production. The majority of zero values in real production corresponds to velocity lower than 

the cited minimum, pointing out that can be attributed that the wind velocity was not spin the 

turbine blades for power production. 
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Fig 7 exhibits zero values of power production (real and theoretical) against months. August is 

the month with lower numbers of zero values. Meanwhile, December and April are the months 

with hither zero values (around 1550). Similar observations were made for theoretical power 

generation. In this way, most null values can be attributed to wind speed lower than 3 m/s. Fig 

8 plots the amount of wind speed lower than 3 m/s for each month. Fig 7 and 8 similarity 

supports the previous finding.  

 

Fig 7. Zero values of power production versus month. 

 

Fig 8. Wind speed lower than 3 m/s versus month. 

 

6.6. Outlier handling 

Zero values for power production were removed, considering the available data. Outlier 

visualization with a violin plot is used in data analysis to graphically represent the distribution of 

data points, including potential outliers. A violin plot is created by combining aspects of a box 

plot and a kernel density plot, displaying the data's spread, central tendency, and shape. Fig 9 

shows the violin plot for the four main features for each month. 
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Fig 9. Violin plot for outlier visualization. 

As shown in Fig 9, all features present significant outliers over the year, especially wind speed 

and direction. Power production exhibited the highest number of outliers in July. The outliers 

can infer anomalies during the model training. For this reason, outliers were removed based on 

quantile criteria (wind speed: 3- 18.8 m/s). Fig 10 presents the real power generation based on 

wind conditions in polar diagrams. Most records (after outlier remotion) give a predominant 

wind direction between 170-225°, and 15-90°, showing the highest wind speed values. 

 

Fig 10. Polar representation of real power generation versus wind conditions.  
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6.7.  Data Modeling 

6.7.1. Data Processing 

The data processing was performed using Apache Spark MLlib, which It provides various 

tools and techniques for preparing and processing data for machine learning tasks. One such 

technique is the vectorization of features, which is crucial for transforming raw data into a 

suitable format for machine learning algorithms. The vectorization of features is an essential 

step in the machine learning pipeline: 

a. Dense and Sparse Vectors: Dense vectors store all the values in an array, whereas Sparse 

vectors store only the non-zero values along with their indices, making them more 

memory-efficient for datasets with a large number of features and lots of zeros. 

b. Feature Transformers: Some common transformers include Tokenizer (for text data), 

OneHotEncoder (for categorical data), and StandardScaler (for numerical data). These 

transformers can be applied sequentially in a pipeline to prepare the data for machine 

learning models. 

c. Feature Selection: Spark MLlib also supports feature selection techniques like Chi-

Squared selector and Variance Threshold selector.  

d. Pipeline: Spark MLlib's Pipeline API allows you to chain multiple feature transformers 

and a machine learning model into a single, unified workflow.  

The target label is real power production, with the following features: month, hour, and wind 

speed and direction. The dataset was split into train dataset (80%) and test dataset (20%). 

 

6.7.2. Models 

The following models were tested: Gradient-Boosted Trees (GBTs), Generalized Linear 

Regression, Decision Tree Regressor, Random Forest Regressor, Linear Regression, FM 

Regressor, and Isotonic Regression. 

a. Gradient-Boosted Trees (GBTs): Gradient-Boosted Trees is an ensemble learning 

technique. It works by iteratively training trees to correct the errors made by previous 

trees. The final model is the weighted sum of these trees. GBTs are particularly effective 

for handling non-linear relationships and can be used for both regression and 

classification tasks. They are known for their high performance and robustness but can 

be prone to overfitting if not properly tuned. 

b. Generalized Linear Regression: It is a generalization of linear regression that allows for 

response variables that have error distribution models other than a normal distribution. 

It combines a linear predictor with a link function to model the relationship between the 

input features and the response variable.  

c. Decision Tree Regressor: A Decision Tree Regressor is a tree-based model used for 

regression tasks. It recursively splits the input space into different regions based on the 

values of the input features. Each split is determined by choosing the feature and split 

point that minimize the overall error in predicting the target variable.  

d. Random Forest Regressor: Random Forest Regressor is an ensemble learning method 

that combines multiple decision trees to create a more robust model. The trees in the 

forest are trained independently, and their predictions are aggregated (typically by 

averaging) to form the final prediction. Random Forests introduce randomness in the 

tree construction process to reduce correlation between the trees, which helps improve 
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performance and reduce overfitting. They can handle non-linear relationships and are 

generally more accurate than individual decision trees. 

e. Linear Regression: It is a simple and widely used statistical method for modeling the 

relationship between a response variable and one or more input features. It assumes a 

linear relationship between the input features and the target variable and estimates the 

coefficients of the linear equation by minimizing the sum of squared errors between the 

predicted and actual values. 

f. FM Regressor: Factorization Machines (FM) Regressor is a versatile and efficient model 

that can handle sparse data and high-dimensional feature spaces. It works by factorizing 

the feature interactions, allowing it to capture the interactions between the input 

features even when data is sparse. It can handle both linear and non-linear relationships 

and is particularly useful when dealing with categorical data with high cardinality. 

g. Isotonic Regression: Isotonic Regression is a non-parametric technique used to fit a 

monotonic function to the data. It aims to find the best non-decreasing (or non-

increasing) function that minimizes the sum of squared errors between the predicted 

and actual values. Isotonic Regression is useful when there is a natural ordering in the 

input data, and the relationship between the input and output variables is expected to 

be monotonic. It can handle non-linear relationships but is limited to monotonic 

functions. 

The performance metrics to test the models were correlation coefficient (R2), MAE (Mean 

Absolute Error), and RMSE (Root Mean Squared Error). Table 1 shows the metric for each tested 

model. 

Table 1. Metrics of the tested models. 

Model R2 MAE RMSE 

GBTs 0.9768 95.94 193.6 
Generalized Linear Regression 0.8916 282.8 409.7 
Decision Tree Regressor 0.9654 119.0 231.3 
Random Forest Regressor 0.9421 212.1 299.4 
Linear Regression 0.8916   282.8 409.7 
FM Regressor 0.6035    617.7 783.6 
Isotonic Regression 0.01804 1097 1233 

 

According to the metrics obtained, the best performance was reached using GBTs, with R2 = 

0.9768 (the model can represent 97.68% of data behavior). Finally, Fig 11 plots real and 

theoretical power generation and predicted values using the GBTs model for the entire dataset. 
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Fig 11. Real, theoretical and predicted power generation versus wins speed. 

From a general perspective, theoretical power generation represents a simplification of 

real power generation. Conversely, the GBTs model satisfactorily reproduced the real power 

data for wind speeds higher than 5 m/s.  

As shown in Fig 11, the GBTs model could produce outbound predictions (real power 

production > 0). GBT even accurately reproduce real power for wind speed higher than 12.5 m/s. 

According to the findings, the appropriate solution for real power production prediction consists 

of using the ensemble method: theoretical power for wind speed lower than 5 m/s and GBT 

model for higher. 

7. Conclusions 

a. Apache Spark and MLlib were suitable raw data analysis, processing and modelling tools. 

b. Raw data contains many outliers, primarily due to zero power production (wind speed 

< 3 m/s). 

c. March, August and November are the top three months with significant average power 

production. Conversely, the warm months in Turkey (from April to July) present lower 

wind speed averages. 

d. The average wind speed decrease during the morning and noon.  

e. Power generation is strongly correlated with wind speed and not with wind direction.  

f. The power production is asymptotic to 3500 kw for higher wind speed than 13 m/s, 

approximately.  

g. Most higher wind speeds have a direction between 170-225° and 15-90°.  

h. The best performance metrics were obtained using the GBTs model (R2 = 0.9768). 

However, this model could produce inaccurate predictions for wind speeds lower than 

5 m/s. 

i. The use of an ensemble model is encouraged: theoretical power for wind speed lower 

than 5 m/s and GBT model for higher. 
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8. Further works 

a. Incorporate extra data of turbine wind as maintenance periodicity. 

b. Test the previous models using different outlier handling techniques (e.g. Winsorization, 

Transformation, and Binning). 

c. Hyperparameter tuning of the best model using Bayesian optimization. 


